An efficient D-N alternating algorithm for solving an inverse problem for Helmholtz equation
نویسندگان
چکیده
<p style='text-indent:20px;'>Data completion known as Cauchy problem is one most investigated inverse problems. In this work we consider a associated with Helmholtz equation. Our concerned the convergence of well-known alternating iterative method [<xref ref-type="bibr" rid="b25">25</xref>]. main result to restore for classical algorithm (KMF) when wave numbers are considerable. This achieved by, some simple modification Neumann condition on under-specified boundary and replacement by relaxed ones. Moreover, small number <inline-formula><tex-math id="M111111">\begin{document}$ k $\end{document}</tex-math></inline-formula>, KMF algorithm's rid="b25">25</xref>] ensured, our can be used an acceleration convergence.</p><p style='text-indent:20px;'>In case, present theoretical results algorithm. Meanwhile it, deduce intervals related relaxation parameters in different situations. contrast existing results, proposed implement converges all choice number.</p><p style='text-indent:20px;'>We approach using finite element obtain accurate numerical affirm prove it's effectiveness.</p>
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولAn inverse problem for Helmholtz equation
This article is concerned with subsurface material identification for the 2-D Helmholtz equation. The algorithm is iterative in nature. It assumes an initial guess for the unknown function and obtains corrections to the guessed value. It linearizes the otherwise nonlinear problem around the background field. The background field is the field variable generated using the guessed value of the unk...
متن کاملA modified VIM for solving an inverse heat conduction problem
In this paper, we will use a modified variational iteration method (MVIM) for solving an inverse heat conduction problem (IHCP). The approximation of the temperature and the heat flux at are considered. This method is based on the use of Lagrange multipliers for the identification of optimal values of parameters in a functional in Euclidian space. Applying this technique, a rapid convergent s...
متن کاملA novel computational procedure based on league championship algorithm for solving an inverse heat conduction problem
Inverse heat conduction problems, which are one of the most important groups of problems, are often ill-posed and complicated problems, and their optimization process has lots of local extrema. This paper provides a novel computational procedure based on finite differences method and league championship algorithm to solve a one-dimensional inverse heat conduction problem. At the beginning, we u...
متن کاملAn inverse random source problem for the Helmholtz equation
This paper is concerned with an inverse random source problem for the one-dimensional stochastic Helmholtz equation, which is to reconstruct the statistical properties of the random source function from boundary measurements of the radiating random electric field. Although the emphasis of the paper is on the inverse problem, we adapt a computationally more efficient approach to study the soluti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete and Continuous Dynamical Systems - Series S
سال: 2022
ISSN: ['1937-1632', '1937-1179']
DOI: https://doi.org/10.3934/dcdss.2021013